Photophysical and Photocatalytic Properties of Molybdates and Tungstates with a Scheelite Structure

Hideki Kato,[†] Naoko Matsudo,[†] and Akihiko Kudo*^{†,††}

[†]Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 ^{††}Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST)

(Received June 25, 2004; CL-040738)

Photophysical and photocatalytic properties of molybdates and tungstates with a scheelite structure were investigated. The band gaps of scheelite compounds narrowed when the compounds were composed of Ag^+ and Bi^{3+} ions. $(NaBi)_{0.5}MoO_4$ (BG: 3.1 eV) and $(AgBi)_{0.5}MoO_4$ (BG: 3.0 eV) showed the photocatalytic activities for O₂ evolution from an aqueous solution containing an electron acceptor. On the other hand, $(NaBi)_{0.5}$ -WO₄ (BG: 3.5 eV) produced H₂ from an aqueous solution containing an electron donor.

Photocatalytic water splitting is an attractive reaction from the viewpoint of photon energy conversion. It has been reported that some metal oxides function as highly active photocatalysts for water splitting.¹⁻⁶ Development of highly efficient photocatalysts with a visible light response is desired in terms of utilization of solar energy. However, the satisfying photocatalyst has not been found at the present stage. Therefore, the research to survey new photocatalyst materials is still important. The photocatalysts for water splitting are mainly oxide materials based on Ti,^{1,2,7} Nb,^{1,2} Ta,^{2–4,8–11} Ga,⁵ and In.⁶ It has been reported that, for compounds consisting of the sixth group element, some polytungstates are homogeneous photocatalysts for H₂ evolution from an aqueous solution containing an electron donor.¹² On the other hand, there are only a few reports about W-based heterogeneous photocatalysts, $Na_2W_4O_{13}$,¹³ $Bi_2W_2O_9$,¹⁴ and Bi_2WO_6 ,¹⁴ besides WO_3 .¹⁵ These W-based photocatalysts can produce not only O₂ but also H₂ from an aqueous solution containing sacrificial reagents. This result suggests the possibility that some W-based photocatalysts with the activity for water splitting may be developed.

There are many reports for perovskite-related photocatalysts.^{1–4,7–11,14} Therefore, the perovskite-related structure seems to be advantageous for photocatalysts. On the other hand, BiVO₄ which is a highly efficient photocatalyst for O₂ evolution under visible light irradiation has a monoclinic scheelite structure.¹⁶ PbMoO₄ is also a scheelite-type photocatalyst.¹⁷ The scheelite structure is also interesting as a crystal structure of a photocatalyst. In the present study, photophysical and photocatalytic properties of molybdates and tungstates with the scheelite structure are investigated. The effects of component ions, especially Ag⁺ and Bi³⁺, on the photophysical properties are also discussed.

The powders of molybdates and tungstates were obtained by solid-state syntheses. Oxides and carbonates of the starting materials were mixed in a stoichiometric ratio. The mixture was calcined at 803–1123 K for 5 h in air using an alumina crucible. The obtained powders were confirmed by X-ray diffraction (Rigaku; MiniFlex). A platinum cocatalyst was loaded from an aqueous H_2PtCl_6 solution by a photodeposition method. Photocatalytic

 H_2 or O_2 evolution from water containing sacrificial reagents was carried out in a gas-closed circulation system as reported in the previous literature.¹¹ The light source was a 300-W Xe-arc lamp (Parkin-Elmer; Cermax-LX300F). The evolved H_2 and O_2 were analyzed by gas chromatography. Diffuse reflection spectra of molybdates and tungstates were measured using a UV–vis-NIR spectrometer (Jasco; Ubest-V570) and were converted from reflectance to absorbance by the Kubelka–Munk method. Photoluminescence was measured at 77 K using a fluorescence spectrometer (Spex; FluoroMax).

XRD patterns of $(A1A2)_{0.5}MoO_4$ (A1: Na⁺, Ag⁺, A2: Ln³⁺, Bi³⁺) were assigned to a tetragonal scheelite structure. The diffraction peaks shifted appropriately according to the ion sizes of A1 and A2 cations. (NaBi)_{0.5}WO₄ also possessed a scheelite structure. The diffraction pattern of (AgBi)_{0.5}WO₄ was different from that of scheelite although there was a report in JCPDS (37-102) that (AgBi)_{0.5}WO₄ had a CaWO₄ type structure.

The positions of absorption bands of the scheelite-type compounds were changed with the component ions as shown in Figure 1. Band gaps estimated from the onsets of the absorption are listed in Table 1. Among the molybdates, $(NaLa)_{0.5}MoO_4$ had the widest band gap (3.9 eV) which was the same value as the band gap of CaMoO_4. The band gaps of $(AgLa)_{0.5}MoO_4$ and $(NaBi)_{0.5}MoO_4$ were narrower by 0.4 and 0.8 eV than that of $(NaLa)_{0.5}MoO_4$, respectively. Moreover, $(AgBi)_{0.5}MoO_4$ had a narrower band gap than $(AgLa)_{0.5}MoO_4$ and $(NaBi)_{0.5}-MoO_4$. This result indicates that the valence band of $(AgBi)_{0.5}-MoO_4$ would be formed at a more negative position by the synergetic effect of Ag^+ and Bi^{3+} than that consisting of Ag^+ or Bi^{3+} . $(AgCe)_{0.5}MoO_4$ showed the intense absorption in the visible light region. Its band gap was estimated to be 2.3 eV from the

Figure 1. Diffuse reflection spectra of scheelite-type molybdates at room temperature, (a) $(NaLa)_{0.5}MoO_4$, (b) $(AgLa)_{0.5}-MoO_4$, (c) $(NaBi)_{0.5}MoO_4$, and (d) $(AgBi)_{0.5}MoO_4$.

 Table 1. Photocatalytic activities of scheelite-type molybdates and tungstates

Catalyst	BG	Activity/ μ mol h ⁻¹	
	/eV	H ₂ ^a	$O_2{}^b$
(NaLa) _{0.5} MoO ₄	3.9	_	
(NaBi)0.5MoO4	3.1	0.6	58
(AgLa) _{0.5} MoO ₄	3.5	0	1.1
(AgBi) _{0.5} MoO ₄	3.0	0	10.7
(AgCe) _{0.5} MoO ₄	2.3	0	0
(AgEu) _{0.5} MoO ₄	3.2	0	1.1
(AgYb) _{0.5} MoO ₄	3.1	0	0
(NaBi) _{0.5} WO ₄	3.5	7.0	1.3
(AgBi) _{0.5} WO ₄	3.2	0.1	5.8

^aFrom an aq. CH₃OH solution (10 vol %), Pt (0.5 wt %) cocatalyst loaded, ^bfrom an aq. AgNO₃ solution (0.05 mol L^{-1}). Catalyst: 0.3 g, reactant solution: 150 mL, light source: 300-W Xe lamp, cell: top-irradiation cell with Pyrex a window.

onset of absorption. The narrow band gap of (AgCe)_{0.5}MoO₄ seemed to be due to the contribution of the Ce4f orbital to formation of the valence band.¹⁸ On the other hand, when La^{3+} ions in (AgLa)_{0.5}MoO₄ were replaced with Eu³⁺ and Yb³⁺ which can take a divalent oxidation number, the band gaps were narrowed. For the tungstates, the replacement of Ca^{2+} ions in CaWO₄ (BG: 4.4 eV) with Na⁺ and Bi^{3+} ions made the band gap narrower by 0.9 eV as the case of molybdates. Moreover, the synergetic effect of Ag⁺ and Bi³⁺ on the narrowing the band gap was also observed for (AgBi)_{0.5}WO₄ although its structure was not a scheelite-type. These results conclude that Ag4d and Bi6s orbitals form the valence bands of scheelite-type compounds more negatively than that consisting of the only O2p orbitals observed for AgNbO₃¹¹ and BiVO₄.¹⁶ The excited energy is generally localized in isolated MO₄ tetrahedra in a scheelite structure. The excited energy may be delocalized more or less when Ag4d and Bi6s contribute to the band formation. The delocalization of the excited energy would also affect the narrowing the band gap.

Photoluminescence of molybdates was investigated to confirm the change in the energy structure. $(NaLa)_{0.5}MoO_4$, $(AgLa)_{0.5}MoO_4$, and $(NaBi)_{0.5}MoO_4$ showed broad emission bands with maxima at 560 nm by the band gap excitation at 77 K. The onsets of excitation spectra agreed with those of absorption spectra. Thus, it was revealed that the replacement of Na⁺ and La³⁺ ions with Ag⁺ and Bi³⁺ ions made the excitation bands for luminescence of MoO_4^{2-} shift to the red side. On the other hand, $(AgEu)_{0.5}MoO_4$ showed sharp emission at 614 nm assigned to the emission from Eu³⁺ ions by excitation of not only Eu³⁺ ions but also the band gap. In contrast, no emission was observed for $(AgCe)_{0.5}MoO_4$, $(AgYb)_{0.5}MoO_4$, and $(AgBi)_{0.5}-MoO_4$.

Photocatalytic activities of scheelite-type molybdates and tungstates for H_2 or O_2 evolution from an aqueous solution containing a sacrificial reagent are listed in Table 1. All molybdates hardly produce H_2 . (NaBi)_{0.5}MoO₄ and (AgBi)_{0.5}MoO₄ possessing the characteristic valence bands showed the photocatalytic activities for O_2 evolution. It indicates that their valence bands have potentials deep enough to produce O_2 and that these materials have surface active sites for O_2 formation. In the case of tungstates, (NaBi)_{0.5}WO₄ produced H_2 . It indicates that the conduction band consisting of W5d orbitals in a scheelite structure possesses a negative potential enough to produce H₂. However, $(AgBi)_{0.5}WO_4$ showed a negligible activity for H₂ evolution. It is due to that the conduction band of $(AgBi)_{0.5}WO_4$ with a structure different from scheelite does not have a satisfying potential for H₂ production even if the band is formed by the W5d orbitals as well as $(NaBi)_{0.5}WO_4$. In addition, Ag^+ and/or Bi^{3+} ions may form trap sites of photogenerated electrons.

The number of heterogeneous photocatalysts based on W and Mo for H_2 or O_2 evolution was quite small. Moreover, the scheelite-type photocatalysts were limited to only PbMoO₄¹⁷ and BiVO₄.¹⁶ In the present study, it has been found that some scheelite-type molybdates and tungstates function as photocatalysts for H_2 or O_2 evolution in the presence of sacrificial reagents. Bi6s and Ag4d have been proven to be effective orbitals to form the valence band more negatively than O2p.

This research was supported by Core Research for Evolutional Science and Technology, Japan Science Technology Agency (CREST, JST), a Grant Aid (No. 14050090) for the Priority Area Research (No. 417) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. One of us (HK) has been awarded a Research Fellowship of the Japan Society of the Promotion of Scientists for Young Scientists.

References

- K. Domen, J. N. Kondo, M. Hara, and T. Takata, *Bull. Chem.* Soc. Jpn., 73, 1307 (2000), and references therein.
- 2 A. Kudo, *Catal. Surv. Asia*, **7**, 31 (2003), and references therein.
- 3 H. Kato and A. Kudo, *Catal. Today*, **78**, 561 (2003).
- 4 H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc., 125, 3082 (2003).
- 5 K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 106, 9048 (2002).
- 6 J. Sato, N. Saito, H. Nishiyama, and Y. Inoue, J. Phys. Chem. B, 107, 7965 (2003).
- 7 J.-M. Lehn, J.-P. Sauvage, and R. Ziessel, *Nouv. J. Chim.*, 4, 623 (1980).
- 8 T. Ishihara, H. Nishiguchi, K. Fukamachi, and Y. Takita, *J. Phys. Chem. B*, **103**, 1 (1999).
- 9 M. Machida, J. Yabunaka, and T. Kijima, *Chem. Mater.*, 12, 812 (2000).
- 10 K. Shimizu, Y. Tsuji, M. Kawakami, K. Toda, T. Kodama, M. Sato, and Y. Kitayama, *Chem. Lett.*, **2002**, 1158.
- 11 H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B, 106, 12441 (2002).
- 12 T. Yamase, Inorg. Chim. Acta, 64, L155 (1982).
- 13 A. Kudo and H. Kato, Chem. Lett., 26, 421 (1997).
- 14 A. Kudo and S. Hijii, Chem. Lett., 28, 1103 (1999).
- 15 J. R. Darwent and A. Mills, J. Chem. Soc., Faraday Trans. 2, 78, 359 (1982).
- 16 A. Kudo, K. Omori, and H. Kato, J. Am. Chem. Soc., **121**, 11459 (1999).
- 17 A. Kudo, M. Steinberg, A. J. Bard, C. Alan, M. A. Fox, T. E. Mallouk, S. E. Welber, and J. M. White, *Catal. Lett.*, 5, 61 (1990).
- 18 M. Machida, S. Murakami, T. Kijima, S. Matsushima, and M. Arai, J. Phys. Chem. B, 105, 3289 (2001).